
ETRI 원내원내원내원내전문전문전문전문교육교육교육교육

GPS/관성센서관성센서관성센서관성센서통합에통합에통합에통합에의한의한의한의한측위측위측위측위및및및및응용응용응용응용

LEC1 INS FUNDAMENTALS

2005/7/14

이 형 근 ( hyknlee@hau.ac.kr )



2

� To accurately determine position and velocity 
relative to a known reference

� To plan and execute the maneuvers necessary to 
move between desired locations 
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� Radio Navigation Systems 
– GPS, Galilero

– VOR/DME, ILS, TACAN, Loran

� Dead reckoning systems
– Inertial Navigation Systems (INS)

– Gyro/tachometer systems: Land applications 
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Gimballed INS vs. Strapdown INS
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� Earliest times
– Navigation by observation

– Polynesians cross the Pacific Ocean about two millennia ago

� 13th century
– Compass, which could be used irrespective of visibility

– Sextant, which enabled position fixes to be made accurately 
on land

� 17th century
– Isaac Newton defined the laws of mechanics 

and gravitation, which are the fundamental 

principles of inertial navigation

� Early 18th century
– A stabilized sextant by Serson

– An accurate chronometer by Harrison
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� 19th century
– Gyroscopic effect in 1852 by Foucault

– Rotational motion of the Earth and the demonstration of 
rotational dynamics by Bohneberger, Johnson, and Lemarle

– Ringing of hollow cylinders, a phenomenon later applied to 
solid state gyroscopes, in 1890 by Prof. G.H.Bryan

� 20th century
– Gyrocompass

– Schuler tuning: 84min,  undamped natural period 

– Application of the gyroscopic effect to control and guidance 
by Sperry brother

– Stable platform for fire control systems for guns on ship in 
the 1920s

– Demonstration of the principles of inertial guidance in the V2 
rocket during World War II

– Strapdown technique for navigation in 1949

≅gR /2π
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� 20th century(cont’d)
– More accurate sensors in the 1950s : 15deg/hr ���� 0.01deg/hr 
by Prof. Charles Stark Draper, MIT 

– INS using the so-called stable platform technology became 
standard equipment in military aircraft, ships and submarines 
during the 1960s

– Ring laser gyroscope

– Ballistic missile and exploration of space

– In the last two decades, the application of the 
microcomputer 

– Development of gyroscopes with large dynamic ranges 
enabling the strapdown principle to be realized

� Modern-day inertial Navigation system
– Diverse applications : robotics, racing or high performance 
motor car and for surveying underground well and pipelines

– Call for navigation systems having a very broad range of 
performance capabilities
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Strapdown Sensor and Applications
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Sea

Vertical 
deflection

Geoid undulation

Ellipsoid

Geoid

Actual 
surface

---- GeoidGeoidGeoidGeoid is defined as level surface of gravity field with best fit to mis defined as level surface of gravity field with best fit to mis defined as level surface of gravity field with best fit to mis defined as level surface of gravity field with best fit to mean sea level. ean sea level. ean sea level. ean sea level. 

(Maximum difference between (Maximum difference between (Maximum difference between (Maximum difference between geoidgeoidgeoidgeoid and mean sea level is about 1 m)and mean sea level is about 1 m)and mean sea level is about 1 m)and mean sea level is about 1 m)

- Ellipsoid defines an approximated surface to simplify geometrieEllipsoid defines an approximated surface to simplify geometrieEllipsoid defines an approximated surface to simplify geometrieEllipsoid defines an approximated surface to simplify geometries and s and s and s and 

computations regarding the Earth.computations regarding the Earth.computations regarding the Earth.computations regarding the Earth.
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semi-major Axis:  a = 6378137 (m)

semi-minor Axis: b = 6356752.3142 (m)

flatness:  f = (a-b)/a = 1/298.257223563 = 0.00335281066475

eccentricity: e=[ f(2-f) ]1/2 = 0.08181919084262

a

b
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*  *  *  *  is measured in      .

* * * * Magnitude of                                                   caused by 

the gravity deflection is typically less than           .
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Coordinate Systems
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Coordinate systems related to INS
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Coordinate Systems: Inertial Frame (i-frame)

� Inertial Frame (iInertial Frame (iInertial Frame (iInertial Frame (i----frame) frame) frame) frame) – A reference frame in which NewtonA reference frame in which NewtonA reference frame in which NewtonA reference frame in which Newton’s laws of motion apply. s laws of motion apply. s laws of motion apply. s laws of motion apply. 

NonNonNonNon----accelerating but may be in uniform linear motion. An orthogonal accelerating but may be in uniform linear motion. An orthogonal accelerating but may be in uniform linear motion. An orthogonal accelerating but may be in uniform linear motion. An orthogonal coordinate system.coordinate system.coordinate system.coordinate system.
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Coordinate Systems: ECEF Frame (e-frame)

� EarthEarthEarthEarth----Centered EarthCentered EarthCentered EarthCentered Earth----Fixed (ECEF) Frames (eFixed (ECEF) Frames (eFixed (ECEF) Frames (eFixed (ECEF) Frames (e----frame) frame) frame) frame) – Its origin fixed to the center of Its origin fixed to the center of Its origin fixed to the center of Its origin fixed to the center of 
the earth. The axes rotate relative to the inertial frame with athe earth. The axes rotate relative to the inertial frame with athe earth. The axes rotate relative to the inertial frame with athe earth. The axes rotate relative to the inertial frame with a frequency offrequency offrequency offrequency of

� because of the daily earth rotation and yearly revolution about because of the daily earth rotation and yearly revolution about because of the daily earth rotation and yearly revolution about because of the daily earth rotation and yearly revolution about the sun. the sun. the sun. the sun. 
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Coordinate Systems: Locally-Level Frame (n-frame) 

� LocallyLocallyLocallyLocally----Level Frame (nLevel Frame (nLevel Frame (nLevel Frame (n----frame) frame) frame) frame) – The zThe zThe zThe z----axis points toward the interior of the axis points toward the interior of the axis points toward the interior of the axis points toward the interior of the 

ellipsoid along the ellipsoid normal. The xellipsoid along the ellipsoid normal. The xellipsoid along the ellipsoid normal. The xellipsoid along the ellipsoid normal. The x----axis points toward true north. The axis points toward true north. The axis points toward true north. The axis points toward true north. The 
yyyy----axis follows the rightaxis follows the rightaxis follows the rightaxis follows the right----handed rule.handed rule.handed rule.handed rule.
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Coordinate Systems: Body Frame (b-frame)

� Body Frame (bBody Frame (bBody Frame (bBody Frame (b----frame) frame) frame) frame) – The origin is usually at the center of gravity of the The origin is usually at the center of gravity of the The origin is usually at the center of gravity of the The origin is usually at the center of gravity of the 

vehicle of interest. The xvehicle of interest. The xvehicle of interest. The xvehicle of interest. The x----axis is defined in the forward direction. The zaxis is defined in the forward direction. The zaxis is defined in the forward direction. The zaxis is defined in the forward direction. The z----axis axis axis axis 

is defined pointing to the bottom of the vehicle. The yis defined pointing to the bottom of the vehicle. The yis defined pointing to the bottom of the vehicle. The yis defined pointing to the bottom of the vehicle. The y----axis completes the axis completes the axis completes the axis completes the 
rightrightrightright----handed orthogonal coordinate system.handed orthogonal coordinate system.handed orthogonal coordinate system.handed orthogonal coordinate system.
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Transformation
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Transformation about a Single-Axis

� A nonA nonA nonA non----zero vector  fixed in space can be expressed with zero vector  fixed in space can be expressed with zero vector  fixed in space can be expressed with zero vector  fixed in space can be expressed with 

respect to various frames.respect to various frames.respect to various frames.respect to various frames.

� If we express  with respect to the iIf we express  with respect to the iIf we express  with respect to the iIf we express  with respect to the i----frame and eframe and eframe and eframe and e----frame, they frame, they frame, they frame, they 
are summarized asare summarized asare summarized asare summarized as
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� Euler angles from n-frame to b-frame:
(1) ψψψψ- rotation about  z
(2) θθθθ- rotation about y’
(3) φφφφ - rotation about x’’
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Thus, the total transformation matrix can be decomposed

by three elementary transformation matrices as follows.
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Properties of the Transformation Matrix

(1) (1) (1) (1) Inverse transformationInverse transformationInverse transformationInverse transformation

(2) (2) (2) (2) OrthonormalityOrthonormalityOrthonormalityOrthonormality

(3) Transpose matrix equals inverse matrix by (1) and (2)(3) Transpose matrix equals inverse matrix by (1) and (2)(3) Transpose matrix equals inverse matrix by (1) and (2)(3) Transpose matrix equals inverse matrix by (1) and (2)
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Utilization of Transformation Matrix in SDINS



Attitude Differential 
Equation
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Attitude Differential Equation
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Position and

Velocity Differential 
Equations
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Parameterization, Differentiation, and Frames
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� Vector
• an arrow (rod) consisting of starting and 
finishing points

� Parameterization of a vector w.r.t. a frame
• The same vector can be represented by 
different parameterizations if reference frames 
are different.

� Differentiation of a vector w.r.t. a frame
• Differentiation of the same vector can result in 
different vectors if reference frames for 
differentiation are different. We ride the 
reference frame for differentiation and watch 
the changes of the vector.

� Differentiation of a vector w.r.t. a frame 
and its parameterization w.r.t. another 
frame
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Differentiation w.r.t. Different Frames
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Specific Force Equations in a Moving Frame
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Velocity Differential Equation
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Position Differential Equation
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Quaternion-based

Attitude Algorithm
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� Attitude is among most important information 
provided by inertial navigation systems

� The example illustrates how rotation sequence 
ambiguity (Non-commutivity error) occurs due 
to non-zero sampling interval for digitization.

� To minimize this error source, we should sample 
gyro outputs as fast as possible.

� For this purpose, we need an attitude algorithm 
that is numerically efficient and stable 

-> “quaternions”



47

- At each submajor interval, gyro outputs are sampled

- At each minor interval, quaternions are updated

- At each major interval, transformation matrices are 
updated
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� Among the various attitude dynamics, conning 
motions stimulate largest non-commutivity
errors.  

� The analysis of attitude error under the conning 
motion is very important in SDINS since it is the 
major environmental error source.
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� Quaternion update 
by incremental quaternion
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where

((((by quaternion multiplication)by quaternion multiplication)by quaternion multiplication)by quaternion multiplication)

((((by matrix vector multiplication)by matrix vector multiplication)by matrix vector multiplication)by matrix vector multiplication)
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Transformation Matrix by Quaternion
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� By applying similar procedure, one can also get 3-, 4- and 
5-sample algorithms. 

� 3-sample coning algorithm is the most popular method 
for practical implementation.

� There is also a branched method utilizing not only the 
angles in the same minor interval but also the fraction of 

angles sampled in the previous minor interval, i.e. 

)(7125.04125.0 13231321 θθθθθθθθ −++++=Φ



Summary of 
SDINS Algorithm
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Error Modeling
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